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Abstract

Understanding the genetic basis of phenotypic variation is a major challenge in biol-

ogy. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on tele-

ost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting

QTL detection and fine-mapping. The number of fish QTL studies per year increased

over the review period and identified a cumulative number of 3632 putative QTLs.

Most studies used linkage-based mapping approaches and were conducted on non-

model species with limited genomic resources. A gradual and moderate increase in the

size of the mapping population and a sharp increase in marker density from 2011

onwards were observed; however, the number of QTLs and variance explained by

QTLs changed only minimally over the review period. Based on these findings, we dis-

cuss the causative factors and outline how larger sample sizes, phenomics, comparative

genomics, epigenetics and software development could improve both the quantity and

quality of QTLs in future genotype–phenotype studies. Given that the technical limita-

tions on DNA sequencing have mostly been overcome in recent years, a renewed focus

on these and other study design factors will likely lead to significant improvements in

QTL studies in the future.
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Introduction

A major challenge in biology is to understand the

genetic basis of phenotypic trait variation. Most pheno-

typic variation is thought to be caused by quantitative

genetic variation that results from the segregation of

alleles at multiple quantitative trait loci (QTL) and is

influenced by and sensitive to the environment (Mackay

2001). Insights into this complex genotype–phenotype
map, including environmental effects, promises to yield

important knowledge for predicting disease risks (Leh-

ner 2013), supporting selective breeding programmes

(Dekkers 2012) and understanding adaptive variation in

natural populations (Savolainen et al. 2013). It is no sur-

prise that numerous studies over recent years have

attempted to dissect the genotype–phenotype connec-

tions in a wide range of species.

Genotype–phenotype relationships can be mapped to

identify the genomic regions controlling phenotypic

traits, with the ultimate, yet often time-consuming, goal

to locate the causal genes or nucleotide mutations

underlying the trait in question (Rockman 2012). Link-

age, association (linkage disequilibrium) and combined

linkage and linkage disequilibrium (LDLA) methods

have been developed to map areas containing quantita-

tive trait loci. The general principle of these mapping

methods is that they try to account for phenotypic trait

variation by measuring its correlation with markers that

segregate in a Mendelian fashion. Of these, linkage and

association methods are most frequently used. These

methods differ in several ways. The most noteworthy

difference is that association studies are typically more

precise at locating QTL regions but require many more
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markers to achieve the high level of precision (Ott et al.

2011). Another difference is that association studies can

be conducted using samples from wild or captive popu-

lations with limited familial information, whereas link-

age methods require some form of a relatedness matrix,

which is usually obtained by the controlled breeding of

a managed population.

Historically, the lack of abundant polymorphic mark-

ers has limited the application of these QTL mapping

methods. However, rapid advances in DNA sequencing

technologies and downstream analyses since the 1990s

have enabled the discovery of a significantly larger

number of markers. In particular, methods such as

restriction site-associated DNA (RAD) sequencing (e.g.

genotyping by sequencing) have made it possible to

generate genomewide marker coverage in less time and

cheaper than ever before (e.g. Elshire et al. 2011). The

promise of the ‘genomics era’ is that it will bring a sig-

nificant increase in the power and precision of QTL

studies and an enhanced ability to finely map the

genetic basis of phenotypic traits. While some have

been critical of this claim (e.g. Ioannidis & Kavvoura

2006; Rockman 2012), others are optimistic about both

what has been achieved so far and what the future of

genotype–phenotype investigations will accomplish

(e.g. McCarthy et al. 2008; Visscher et al. 2012). Indeed,

over the last few years a vast number of new QTLs and

associated genes have been identified across a wide

range of invertebrate and vertebrate species (Stranger

et al. 2011; Visscher et al. 2012). However, important

QTL mapping issues have repeatedly been highlighted,

including the lack of power to detect QTLs that have

small effects on highly polygenic traits (missing heri-

tability problem), problems around the biological rele-

vance of QTL mapping studies (e.g. Beavis effect) and

difficulties incorporating epistatic, environmental and

complex phenotypic trait interactions into QTL map-

ping strategies (Mackay et al. 2009; Rockman 2012; Slate

2013; Wellenreuther & Hansson 2016).

Most work investigating genotype–phenotype rela-

tionships has been carried out on model species such as

yeast (Saccharomyces cerevisiae), fruit flies (Drosophila mel-

anogaster), mouse (Mus musculus) and zebrafish (Danio

rerio) (see available information held in public database,

Kahraman et al. 2005). The aforementioned advances in

high-throughput DNA sequencing technologies are,

however, now enabling an expansion of research on

nonmodel species, which have previously been woe-

fully lagging behind model species because of limited

funding and resources (Elshire et al. 2011; Ellegren

2014). Teleost fish is one such group that contains many

nonmodel organisms. They are a particularly interesting

group for investigation because they (i) form the largest

group of vertebrates (around 33 000 species, i.e. ~50%

of all vertebrates), (ii) exhibit high levels of morphologi-

cal diversity and (iii) aquaculture is currently the fastest

growing primary industry.

Despite several good reviews investigating some

aspects of genotype–phenotype research in teleost fish

(e.g. Hemmer-Hansen et al. 2014; Tong & Sun 2015), a

general review that thoroughly investigates all teleost

QTL studies over the last years has not been conducted.

To address this gap, we conducted a systematic survey

of the published QTL studies on teleost fish covering

the last 15 years and extracted QTL information from

each study, including factors concerning the experimen-

tal design and data analysis. Using these data, we first

investigated temporal trends of QTL mapping studies,

including changes over time to study design factors

(e.g. number of markers and sample size) and outcomes

of studies (e.g. number of QTLs found). Second, we

identified a number of correlations between study

design factors and outcomes of studies to investigate

what factors might be influencing QTL mapping suc-

cess. Finally, we discuss the findings and highlight the

factors that will potentially improve the power of geno-

type–phenotype studies in the future.

Methods

Study selection

Fish QTL studies were selected using the Web of Science

search engine with the ‘Topic’ search terms ‘QTL’ and

‘fish’ or ‘Quantitative trait loci’ and ‘fish’ for the period

between 1 January 2000 and 31 December 2015. This

search yielded a total of 715 individual published articles,

of which 563 were removed because they were not avail-

able in English, did not represent QTL identification

studies, were not conducted on teleost fish, or were based

(fully or in part) on previously identified QTLs. Studies

using previously identified QTLs were removed to

reduce bias in QTL detection and mapping precision due

to previous information. We only included studies that

used de novo information. The final data set used in our

review comprised 146 published studies. A second Web

of Science search was carried out using the ‘Topic’ search

terms ‘GWAS’ and ‘fish’ or ‘Genome wide association’

and ‘fish’ and restricted to the period between 1 January

2000 and 31 December 2015. This search yielded a total of

222 individual articles, of which there were an additional

11 genomewide association studies (GWAS) not found in

the first search. These 11 studies were used to look at the

number of studies using linkage and association meth-

ods, but were excluded from all other parts of the review.

For each newly described QTL in the first Web of

Science search, we recorded publication date, species

name, number of individuals sampled at each
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generation in the pedigree, breeding design used for

the pedigree (e.g. F2 backcross, intercross), genetic mar-

ker type and number of markers, QTL identification

software, type of QTL detection method (linkage or

association), individual QTL statistics (e.g. LOD, ANOVA,

significance level, genomewide vs. linkage groupwide),

target trait, trait distribution (discrete/quantitative),

PVE, and peak, start and end location in centiMorgans

(cM) of QTL regions. Additional information about the

target species was also included in the data file, which

included genome size (based on the C-value, Gregory

2016) and the species’ primary habitat (fresh water, sea

water or euryhaline).

Temporal trends and basic study info

All data analyses were carried out in the R statistical

environment (version: 0.99.489) (R Core Team 2013).

Information about experimental set-up of QTL studies

was reported including the numbers of parents and

progeny in the mapping populations, major influences

in the construction of the mapping populations (e.g.

backcrossing, interspecies crosses), the most common

types of species investigated, and frequency of linkage

and association study designs. We then investigated

the temporal trends of studies, including how study

design elements (software, sample size and marker

density) and results of QTL studies have changed

over time. Three measures of QTL study results were

used, including the number of QTLs found per trait,

percentage variance explained (PVE) for QTLs and

QTL region width (cM). The y-axis for temporal

graphs was placed on a log scale for all variables [ex-

cept Studies (n)].

Factors affecting QTL detection

A correlation matrix was calculated using Spearman

correlation coefficient for eight variables, namely num-

ber of QTLs (QTLs), PVE of QTLs (PVE), width of QTL

regions (Width), number of traits investigated (Traits),

number of genetic markers used (Markers), size of map-

ping population (Sample), size of genome based on C-

values (Genome), and marker density (Markers/Gen-

ome) (Table 1). Correlations were calculated for all

studies and for a subset containing only salmonid stud-

ies to reduce noise caused by the wide range of species.

For all variables, the average value for each study was

used. Sample size of the mapping population and PVE

were graphed on a scatter plot. A regression line was

placed using a general linear model (with 95% CI) and

a log 10 transformation of the x- and y-axis. Significant

difference of the slope from 0 was tested using boot-

strapping (10 0009).

Results

The initial Web of Science search identified 712 individ-

ual articles. Of these, studies were removed if they were

not investigating new QTLs (411), conducted on teleost

fish (67), based on previously identified QTLs (50), writ-

ten in English (25), and other miscellaneous reasons

(13) (Fig. S1, Supporting information). The remaining

145 studies included 128 linkage studies, 14 association

studies and three studies using both linkage and associ-

ation to identify QTLs and detected a total of 3627 puta-

tive QTLs. We removed one extreme outlier study from

the majority of analyses because the number of markers

was over 300 times higher than the next closest study

(Ayllon et al. 2015). A second search identified 11 addi-

tional GWAS, which were only included in Fig. 2 of this

review.

Species and pedigree information

Quantitative trait loci data from 49 fish species were

reported in the studies. The three most commonly stud-

ied species were Oncorhynchus mykiss (15%), Salmo salar

(10%) and Cyprinus carpio (8%). Considering all of the

studies together, 71% were carried out on freshwater

species (including anadromous species), 17% on marine

species and 12% on euryhaline species.

The majority of studies (60%) produced their map-

ping population from a single set of parents (i.e. all pro-

geny in the mapping population were full-siblings)

(Fig. S2, Supporting information). The remaining stud-

ies ranged up to a maximum of 400 individuals. Of the

different breeding designs, approximately half used

interstrain or interspecies crosses with (~66%) or with-

out (~33%) a secondary backcrossing step. Only five

studies were conducted on wild (outbred) populations.

Temporal trends

A large increase in the number of QTL studies was

observed over time (Fig. 1A). Prior to 2010, the number

of studies per year averaged around five, but this

increased from 2010 onwards to a maximum of 31 in

2015. Before 2015, simple sequence repeats (SSRs) were

the most commonly used marker type (Fig. 1A). A

noticeable shift to single nucleotide polymorphisms

(SNPs) started to occur in 2011, and by 2015, almost all

studies used SNPs. We found that a total of 24 different

software packages were used for QTL identification.

The most common packages were GRIDQTL, MAPQTL

and various R packages (Fig. 1B). In particular, GRIDQTL

came into use from 2009 onwards, MAPQTL was used

across almost the entire survey period and different R

packages were primarily used from 2011 onwards. A
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consequence of the shift to SNPs from 2011 and

onwards (Fig. 1A) was a significant increase in the aver-

age number of markers used in each study. Prior to

2011, an average of 166 markers were reported in stud-

ies, but this increased to 1171 from 2011 onwards, and

then to 2461 in 2015 (Fig. 1C). Unlike the rapid increase

in marker density, the size of the mapping population

increased more moderately. The mapping size increased

from 122 in 2000 to 525 in 2008 and remained subse-

quently relatively stable from then on, with an average

of 334 after 2008 (Fig. 1C). The average sample size of

mapping populations across the survey period was 294.

Linkage studies were found to consistently outnum-

ber association studies across all years (Fig. 2). This

remained unchanged even after we included studies

resulting from a second search that was specifically tar-

geted at finding GWAS on teleost fish.

Minimal change over time was found when investi-

gating the number of QTLs per trait, the PVE of identi-

fied QTLs or the width of QTL regions (Fig. 3).

Factors affecting QTL detection and fine-mapping

A Spearman correlation matrix was calculated for eight

variables using the total data set and a subset of studies

using only salmonid species, to reduce noise caused by

the wide variety of species (Table 1). The correlation

matrix indicated that the number of QTLs found per

study and the number of traits measured were strongly

positively correlated (r = 0.63), suggesting that the stud-

ies with a higher number of phenotypic trait measure-

ments found more QTLs compared with studies with

fewer measurements. A moderate negative correlation

(r = �0.48) was observed between sample size and PVE

of QTLs, indicating that with more samples the PVE of

QTLs declined. Plotting the PVE of QTLs vs. sample

size with a linear regression and transformed axis indi-

cated that the negative regression line was significantly

different from zero (Fig. 4, P-value < 0.001). The PVE of

putative QTLs also declined as the number of QTLs

increased (r = �0.41). The strongest correlation for the

width of QTL regions was sample size (r = 0.45), which

Table 1 Results for Spearman correlation between eight study design factors and study outcomes including number of QTLs found

(QTLs), average PVE of QTLs (PVE), width of QTL regions (Width), number of traits investigated (Traits), number of markers (Mark-

ers), size of mapping population (Sample), genome size based on C-values (Genome) and marker density (Markers/Genome). Corre-

lations were calculated for all studies (below diagonal) and only salmonid studies (above diagonal). The number of studies used for

each correlation is shown in brackets next to the correlation coefficient. Correlations in bold are those with correlation coefficients

>0.3 in both total and salmonid only data sets

QTLs PVE Width Traits Markers Sample Genome Marker density

QTLs – �0.41 (36) 0.45 (10) 0.43 (51) 0.16 (51) 0.05 (51) 0.04 (51) 0.15 (51)

PVE �0.41 (145) – 0.38 (36) �0.27 (36) 0.37 (36) �0.41 (36) �0.33 (36) 0.41 (36)

Width 0.11 (145) �0.19 (120) – �0.46 (10) 0.84 (10) �0.29 (10) �0.71 (10) 0.83 (10)

Traits 0.63 (145) �0.31 (120) 0.00 (57) – �0.15 (51) 0.22 (51) 0.17 (51) �0.18 (51)

Markers 0.10 (145) 0.13 (120) �0.01 (57) �0.07 (145) – �0.20 (51) �0.23 (51) 0.99 (51)

Sample 0.29 (145) �0.48 (120) 0.45 (57) 0.34 (145) �0.06 (145) – 0.17 (51) �0.22 (51)

Genome 0.21 (145) �0.06 (120) 0.25 (57) �0.08 (145) 0.00 (145) 0.04 (145) – �0.33 (51)

Marker density 0.04 (145) 0.10 (120) �0.08 (57) 0.00 (145) 0.85 (145) �0.04 (145) �0.44 (145) –

Fig. 1 The distribution of genetic marker types (A), software

used for QTL identification (B) and average number of markers

and sample size (C) for studies over the review period. Aver-

age number of markers is a count of markers used for each

study averaged for each year. Average sample size denotes the

number of individuals in the mapping populations.
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suggested QTL width increased along with increasing

sample size. However, this correlation was not sup-

ported in the salmonid only subset (r = �0.29). The

remaining correlations were mostly weak (<0.3 in either

the total data set or the salmonid subset).

Discussion

Insights into the genotype–phenotype map are of cen-

tral interest in many fields of biology and also provide

important information for applied research (e.g. Dek-

kers 2012; Lehner 2013; Savolainen et al. 2013). The ease

with which polymorphic markers can now be discov-

ered, even in nonmodel species, has led to significant

advances in our ability to conduct QTL mapping stud-

ies. Contemporary studies now routinely use hundreds

to thousands of markers. This new statistical power

enables them to overcome the key limitation of previous

work. Given the rise in our ability to search for QTLs in

a true genomewide manner, it may be expected that

both the detection and mapping precision of QTLs

would have increased over time. Indeed, such an

increase in mapping precision has been suggested in a

previous study evaluating the future prospects of geno-

type–phenotype mapping efforts in the ‘genomics era’

(Mackay 2001). The aim of our review was to test these

predictions and to assess the current state of QTL map-

ping in teleost fish by examining QTL studies from the

last 15 years. We have concentrated on teleost QTLs

because fish are the largest vertebrate group and they

Fig. 2 Distribution over the review period of linkage and asso-

ciation studies. The results of an additional literature search

for fish GWAS were also included.

Fig. 3 Distribution of the number of QTLs found per trait (A),

percentage variance explained (PVE) for identified QTLs (B)

and QTL region width in centiMorgans (C) over the review

period. Results are shown as average per study, with the num-

ber of studies in each plot also shown.

Fig. 4 A moderate negative correlation was observed between

size (number of individuals) in the mapping population used

by QTL studies and the average percentage variance explained

(PVE) for QTLs in those studies. A regression line with 95%

confidence intervals was placed using a generalized linear

model. Pearson’s correlation coefficient (r) with P-value for dif-

ference from 0 based on bootstrapping is also shown (see also

Table 1 for Spearman correlation coefficient of this relation-

ship).

© 2016 John Wiley & Sons Ltd
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are commonly subjected to QTL mapping studies and

have a significant level of economic importance in a

range of countries.

Reviewed study designs

Our analysis revealed a steady increase in the number of

QTL mapping studies over the past 15 years (Fig. 1A).

Overall, the studies were diverse and included a wide

range of target species (n = 48), genetic markers (e.g.

AFLPs, SNPs, SSRs) and study designs (e.g. two-stage

linkage mapping, GWA). Interestingly, while a recent

review by Ott et al. (2011) stated that linkage mapping

has lost predominance in favour of association mapping,

this trend was not obvious when evaluating fish studies

(see Fig. 2). The absence of this trend is most likely the

consequence of many studies being carried out on non-

model species, which typically have fewer genetic mark-

ers and therefore favour linkage-based approaches.

There was some variation in the types of mapping popu-

lations used by studies, although the majority of studies

(60%) utilized a biparental cross and it was also common

for studies (50%) to use interstrain or interspecies

crosses (Fig. S2, Supporting information see Box 1 for

some basic information about the advantages of different

population designs). There has been an increase in mar-

ker density for fish studies over the last 15 years

(Fig 1C), with a steep increase since 2011, the latter

being primarily driven by the development of restriction

site-associated DNA (RAD) sequencing approaches (e.g.

genotyping by sequencing) coupled with decreasing

sequencing costs (Elshire et al. 2011; Hilario et al. 2015).

This increasing use of RAD sequencing is still working

its way through the research community, with >50% of

published articles in 2015 still not using the technology.

One possible reason for this is the relatively high level of

technical and bioinformatic skills that this method

requires. However, given its singular advantage over

other methods, it is expected that higher marker densi-

ties produced by RAD sequencing will become increas-

ingly common for fish studies.

Reviewed study results

In addition to reporting on the types of methods used

by the reviewed studies, we attempted to evaluate the

relative success of QTL studies. The ultimate goal of

genotype–phenotype investigations, including QTL

mapping, is to identify the genetic variants which col-

lectively explain the heritable components of a given

trait. However, a persistent problem is the inability to

detect small-effect QTLs, which are implicated in the

‘missing heritability problem’ and ‘Beavis effect’ (Eich-

ler et al. 2010; Slate 2013) and are thought to be

responsible for much, if not most, of the heritable varia-

tion (Rockman 2012). A wide array of potential factors

contribute to this QTL detection weakness including a

simple lack of statistical power (e.g. insufficient samples

or markers) (Hong & Park 2012), choice of study design

(e.g. population design), genetic architecture for a given

trait, and potential epigenetic and uncontrolled environ-

mental factors (Sham & Purcell 2014). A detailed quality

assessment of the state of QTL mapping in teleosts was

problematic because of the inherent variation in study

designs, different genetic architectures among species

and the other factors previously mentioned. However,

the general expectation is that as the power of studies

increases, a greater number of small-effect QTLs should

become detectable. This in turn should improve the

amount of explained heritability and the total number

of QTLs detected (see Fig 2 by Visscher et al. 2012).

Using two basic measures (namely, number of QTLs

found per trait and percentage variance explained),

there appears to have only been minimal change to

study results over the review period (see Fig 3). There

may be a very small increase in number of QTLs

detected (see Fig 3A) and a small reduction in percent-

age variance for identified QTLs (see Fig 3B), but these

changes are not beyond contestation. It should be noted

that all studies used a minimum QTL quality limit of

95% confidence with multiple sampling correction,

which is important if the number of QTLs is used as a

measure of QTL identification success. Higher sample

sizes and marker densities are two of the most com-

monly discussed experimental design factors influenc-

ing QTL detection and mapping accuracy (Hu & Xu

2008; Massault et al. 2008; Hong & Park 2012). The

results of our review suggest that there was only a

weak relationship between these factors and the num-

ber of QTLs detected (sample size: r = 0.29, genetic

markers: r = 0.10, Table 1). For sample size, the weak-

ness of this correlation was most likely influenced by

the relatively small range of sample sizes (min = 30,

max = 3297) among the published studies. Visscher

et al. (2012) plotted similar statistics for a number of

complex traits from human studies and found strong

correlations using a much larger range of sample sizes

(min = 2000, max > 175K). Their finding suggests that a

large increase in sample size (thousands of individuals)

is needed to improve QTL mapping for teleosts. Larger

sample sizes would also be beneficial as studies con-

tinue to use higher marker densities, which require

more stringent multiple sampling corrections to reduce

false positives. Another correlation of note was a mod-

erate negative correlation between sample size and PVE

(Fig 4, Table 1, r = �0.48), which supports the idea that

sample size in the current studies may be important for

reducing the bias towards the detection of only large
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effect alleles (see Box 1) (see also ‘Beavis effect’ discus-

sion by Slate 2013). Although there was limited correla-

tion between the number of genetic markers and QTLs

found, higher marker densities are necessary for fine-

mapping and GWA studies. Ultimately the highest level

of genome coverage would be best, but this should

always be balanced against the cost and the relative

importance of other study design factors (e.g. sample

size). Lastly, the width of QTL regions was also investi-

gated as a potential measure of QTL mapping success,

but the inconsistency of how this was reported made

inferences from these data difficult (see next section).

Overall, we observed limited improvement to the aver-

age width of QTL regions over time.

Data reporting and software limitations

The reviewed studies employed a wide diversity of

methods in their search for QTL regions, particularly

when reporting QTL regions for linkage studies. For

example, less than half of the studies (63 of 146)

reported QTL regions in cMs (Fig 3C) and those that

did record the width of the region employed a number

of different methods. Methods used included the allele

drop-off (Bras et al. 2011), bootstrapping (Kirschner

et al. 2012), Bayesian credibility intervals (Sauvage et al.

2012), set LOD limit from the peak of the QTL (Gag-

naire et al. 2013) or distance between markers above the

significance level cut-off method (Jin et al. 2012). The

finding that QTL regions are described using a wide

array of methods is surprising, given that simulation

studies have clearly indicated that some approaches are

more accurate than others (Visscher et al. 1996; Mani-

chaikul et al. 2006). In particular, simulations have

shown that Bayesian credibility intervals are more accu-

rate than bootstrapping, which itself is more accurate

than the allele drop-off method (Visscher et al. 1996;

Manichaikul et al. 2006). One possible reason for this

wide diversity in reporting is variation among available

software packages. For example, some, such as R/QTL,

Box 1. Experimental design considerations

Many factors are important when designing a QTL mapping study including, but not limited to, the number of

genetic markers, type and size of the mapping population, type of statistics used and phenotyping and environ-

mental factors.

With a significant increase in genotyping power over the recent years, due to lower cost and higher throughput

sequencing, it may be timely to focus more attention on the limitations of other experimental factors. Reduced limi-

tations on genotyping are likely to have an indirect effect of making larger sample sizes more achievable. As dis-

cussed by Hong & Park (2012), the sample size required for sufficient power in a QTL mapping study can be

strongly influenced by the number of markers used, choice of linkage or association approaches, level of linkage

disequilibrium and effect size of QTLs. Hong & Park (2012) indicated that testing a single marker required 248

cases (which would double to 496 cases when the controls are included) and testing 500 000 markers required 1206

cases (2412 cases when including controls) for 80% power when detecting weak-effect QTLs (5% disease preva-

lence, 5% minor allele frequency and complete linkage disequilibrium). Although these simulations were carried

out for association methods, sample sizes for detection of weak-effect alleles with linkage methods should be at

least as high as association tests with a single marker (496 based on Hong & Park (2012). A sufficient sample size

is important for being able to detect weak-effect alleles and avoid biasing our understanding of quantitative genetic

variation by leading us to believe that most QTLs have large effects (Beavis effect) (Slate 2013).

Mapping population design is also an important consideration. The first decision is whether to use a natural popu-

lation (unrelated group of individuals) or family groups. As discussed by Ott et al. (2011), one of the primary

advantages of family designs is that they can be used to control for population stratification. However, a challenge

presented by family-based designs is the level of resources required to construct and maintain them, which can be

considerable. Investigations in natural populations have the advantage of providing insights into the fitness effects

of traits under real-world circumstances (Slate 2005). A family-based design requires careful consideration for the

type of pedigree and crosses used, because this influences the power for detecting QTLs and the complexity of the

analytical approach. A biparental cross is the simplest design and compatible with most software packages and,

indeed, is also the pedigree design that has been most often used in fish QTL studies (see Fig. S2). More sophisti-

cated analyses are needed as the pedigrees become more complicated (e.g. mixed models, see Zhou & Stephens

2012). Some methods such as recombinant inbred lines or extreme phenotype selection can enhance QTL mapping

power; however, if a diverse range of phenotypes (see Box 3) are of interest, these population designs, which are

typically selected for a single trait, would be problematic (Risch & Zhang 1995; Rockman & Kruglyak 2008).
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include Bayesian credibility interval functions, while

others, such as GRIDQTL, do not. Additionally, software

packages are often restricted to data that were obtained

following a particular experimental design. For exam-

ple, R/QTL requires single full-sib families, whereas

GridQTL allows half-sib family designs. An ongoing

focus on software development and implementation of

best practices will be important as QTL studies continue

to employ more complex methods and handle more

complex genotyping, phenotyping, epigenetic and envi-

ronmental data. Also, development of open-source soft-

ware that can be updated, added to and has an active

user/developer base would be of pronounced benefit.

Epigenetic markers

While epigenetics was not investigated in any of the arti-

cles reviewed, the role that epigenetics plays in modulat-

ing gene expression and the genotype–phenotype
process is increasingly being recognized as well as its

potential application in selective breeding (Zhang &

Hsieh 2013). Epigenetic mechanisms typically modify

gene expression and these effects can vary depending on

the genetic variation in and around regulatory elements.

Locating epigenetic markers could help explain more

precisely the role of genome modifications in producing

a range of phenotypes. One good example of the power

of epigenetics in QTL mapping is Cortijo et al. (2014),

which recently reported several methylated regions that

acted as QTLs and accounted for 60–90% of the heritable

variation for flowering time and primary root length in

Arabidopsis. The important role that epigenetics can play

in fish has been highlighted by Baerwald et al. (2016),

who identified differential methylation patterns between

rainbow trout individuals with different migratory beha-

viour. To facilitate the future use of epigenetics in

research, high-throughput sequencing technology can be

used to detected both DNA sequence variation and cer-

tain epigenetic markers and modifications (e.g. bisulphite

sequencing), which will make information such as the

level of DNA methylation and histone modification rela-

tively straightforward to add to genomic-based QTL

study (Li & Tollefsbol 2011).

Applications to selective breeding

Selective breeding is one of the most important applica-

tions that can benefit from QTL mapping results. Tradi-

tional selection techniques use information from a

known pedigree and known phenotypes to produce esti-

mated breeding values (e.g. BLUP, see Henderson 1984).

Moving from these traditional breeding approaches into

programs applying marker-assisted selection (MAS)

allows information from QTLs to be incorporated into

Box 2. Comparative genomics and data sharing

Transferring knowledge (e.g. about QTLs, candidate genes and genetic markers) between studies and species pro-

vides a fruitful way for obtaining more widespread use of candidate genes and QTLs that have previously been

identified. One of the more basic ways this might be done is by transferring information about candidate genes

between species. One example of this was a study which compared growth hormone genes in a range of fish spe-

cies while investigating a QTL in the promoter region which affected growth (Almuly et al. 2005). Another

approach which can be used is meta-QTL analysis techniques, which can be carried out by collating the results

from multiple studies which share a set of genetic markers (e.g. Lanaud et al. 2009). Two programs which have

been developed to facilitate this are BioMercator (Arcade et al. 2004) and cMap (Fang et al. 2003). With the recent

development of high-quality reference genomes assemblies, a range of new comparative genomic techniques have

become available (e.g. Sarropoulou et al. 2008; Sutherland et al. in press). Sarropoulou et al. (2008) describes a com-

parative genomics approach where genomewide EST markers from two species were aligned to the reference gen-

ome of a third species. This enabled orthologous linkage groups to be easily identified. To make this approach

easier, the program MAPCOMP has been built to identify identical and proximal markers between linkage maps and

use a reference genome of a related species as an intermediate. When a likely set of markers have been located,

MAPCOMP allows transfer of QTLs between closely related species, even when their marker sets are quite different

(Sutherland et al. in press). The application of comparative genomics in teleost fish is an important new develop-

ment, because a wide diversity of nonmodel species are studied, which means that the overall research effort is

spread much more thinly compared with land-based production species (e.g. cattle, corn and wheat). Therefore,

open sharing of fish reference genomes and maps will be highly beneficial to researchers, because these will facili-

tate data integration and iterative approaches to QTL discovery. The growth of comparative-based research will be

fuelled by more high-quality genome assemblies, the reconstruction of clear evolutionary and phylogenetic

relationships and, perhaps most importantly, open and effective data sharing.

© 2016 John Wiley & Sons Ltd

8 D. T . ASHTON, P . A . RITCHIE and WELLENREUTHER



the selection process (see discussion by Rezende et al.

2012). Based on simulations, MAS has the potential to

increase genetic gains by 8–38% over traditional methods

(Meuwissen & Goddard 1996). Although the complete

source of this gain was not clear, it was significantly

increased if selection occurred before the trait was mea-

sured and if the trait had low heritability. A more

recently developed method is genomic selection (GS)

(Meuwissen et al. 2001), which simultaneously employs

thousands of genetic markers that cover the entire gen-

ome (Goddard & Hayes 2007) and with this can improve

the genetics-driven approach to selective breeding even

further. One of the main features/advantages of GS (as

noted by Desta & Ortiz 2014) is that it avoids the need for

independent significance tests for each loci (used for QTL

mapping and MAS) by accounting for all trait loci simul-

taneously while random effects from nontrait loci tend

towards zero. As a result of this, GS can more effectively

use high-density genomewide genotyping data sets than

MAS and will likely become the gold standard of selective

breeding in the near future. Currently, genomic selection

has been used extensively in animal breeding (see

Samor�e & Fontanesi 2016), to a minimal level in crop

breeding (see Desta & Ortiz 2014), and little at all in tele-

osts. While epigenetics may add another important layer

to QTL studies (see previous section), it has been sug-

gested that epigenetics would only provide limited addi-

tional gains to existing GS methods (Goddard &

Whitelaw 2014). The primary reason for this is that if epi-

mutations are stable, then they will be in linkage disequi-

librium with genetic markers, which means they will

already be accounted for through existing GS methods

(Goddard & Whitelaw 2014). Alternatively, if they are

unstable, they will not be of much use for informing

selective breeding decisions. As a final note, if genetic

variation is being investigated for use in selective breed-

ing, then a genomic selection approach is best, but if the

interest is for more thorough characterization of a specific

underlying variant, then a QTL mapping approach

designed specifically to characterize causal QTNs might

be best (e.g. Cohen-Zinder et al. 2005; Clop et al. 2006).

For most studies in this review, the focus was on QTL

Box 3. Improved phenotyping approaches

Whereas genotyping technologies have undergone a revolution in the last decades, advances in phenotyping have

been slow. Indeed, despite awareness that the genotype–phenotype map is inaccessible without detailed pheno-

typic data our ability to characterize phenome lags greatly behind our ability to characterize genomes (see discus-

sion by Houle et al. 2010). Improved high-dimensional phenotyping (many traits with known interactions) is

important as it allows researchers to start to disentangle the interactions between phenotypes and between pheno-

types and the environment, thereby reducing background variation and enhancing the power of QTL mapping

studies (Benfey & Mitchell-Olds 2008; Houle et al. 2010). Mixed-model approaches looking at within and between

trait variation are one example of the move towards a phenomics-based approach (Korte et al. 2012). Understand-

ing the full range of phenotype and environmental interactions is also important for determining the biological rel-

evance of genetic variants once they have been identified (Grigorenko 2005; Benfey & Mitchell-Olds 2008; Houle

et al. 2010), for example understanding how those genetic variants produce a given phenotype under real-world

circumstances and environments.

One of the main limitations to the use of more complex phenotyping is the lack of high-throughput phenotyping

methods (Houle et al. 2010). Individual phenotypes typically require unique measurement processes, which make

collection of the large amounts of data necessary for phenomics-based approaches difficult or even impossible.

However, noteworthy progress is starting to be made towards high-throughput phenotyping in some fields, for

example measuring wing traits in Drosophila through the construction of a wing machine (Houle et al. 2003). Like-

wise, in plants the program LEAFANALYSER was developed to simplify the measurement of leaf shape variation by

placing a large number of evenly distributed landmarks along leaf margins and by recording the position of each

automatically (Weight et al. 2008). In fish, some recent progress has also been made, with some procedures being

developed that utilize image-based data input to automatically extract traits from still images or video footage

(Silva et al. 2015; Viazzi et al. 2015; Navarro et al. 2016). However, these methods are often highly species-specific

or require a specific technological set-up, as indicated by the absence of such methods in most if not all of the

reviewed studies. Houle et al. (2010) noted three general areas that are critical for the development of phenomics,

namely the development of technology (e.g. high-quality imaging), improved statistical and analytical capabilities

and better methods for integrating study results (see also Box 2). We foresee that a lot of progress will come from

methods that allow automated phenotyping technologies that are well integrated with databases, particularly from

those technologies that can be applied to a suite of species and set-ups, rather than to a single scenario.

© 2016 John Wiley & Sons Ltd

QTL STUDIES IN FISH 9



identification and the results would probably be best sui-

ted for use in MAS programs or further characterization

with a second round of fine-mapping.

Future outlook and conclusions

The number of QTL mapping studies in fish has

increased significantly over the review period. Most were

carried out on nonmodel species and consequently many

studies used fewer than 1000 markers and employed link-

age-based mapping approaches. Accordingly, few of the

studies were able to fine-map QTLs sufficiently to iden-

tify candidate genes or QTNs. However, the capability of

studies has been increasing in recent times owing to the

development of new approaches to variant discovery,

such as RAD sequencing. Genotyping methods and the

bioinformatics resources will continue to improve and

these will be more widely adopted by the research com-

munity. Because the process of investigating genetic vari-

ation underlying traits is typically iterative, the studies

conducted so far could be seen as representative of the

first step towards identification of candidate genes and

QTNs or as identifying QTLs suitable for informing MAS

programs.

Future improvements to teleost genotype–phenotype
investigations should involve a stronger move towards

higher genome coverage of markers and a larger num-

ber of individuals in study groups (see Box 4). The

ongoing construction of high-quality genome assemblies

will help accelerate more widespread use of compara-

tive genomics approaches, allowing knowledge about

genes and QTLs to be transferred between species

informed by a phylogenetic framework. Fish studies

would greatly benefit from these comparative genomics

approaches, which could help make up for the lack of

concentrated resources that has been a feature of land-

based production species. Areas such as phenomics and

epigenetics are currently not widely used and, however,

are likely to take a more central role in future studies.

An important aspect uniting these future areas is the

ongoing need for better and more user-friendly data

analysis software. This is particularly important for

high-throughput genotyping, sequencing and phenotyp-

ing technologies because the volume of information

produced can only be managed with automation and

high-performance computing. For phenotyping, well-

designed software can provide an effective method for

reducing the burden of collecting large volumes of phe-

notypic data and thereby allow researchers to focus on

the key biological questions that are of interest.

In conclusion, over the last 15 years there has been a

large increase in the number of studies that managed to

successfully identify QTLs in teleost fish. Many of these

studies are underpowered compared with research that

has been conducted on model species, but an ever-

increasing level of genomic resources is also becoming

available for many of the nonmodel species. Addition-

ally, the development of high-quality genome assem-

blies offers many options for comparative genomics and

promotes a data-sharing community of researchers.

Future genotype–phenotype investigations have a very

optimistic outlook with the rise of more sophisticated

methods and affordable solutions that can be applied to

fish.

Box 4. Recommendations for future studies

With genotyping limitations being largely overcome in recent years, other areas that are likely to be important for

future studies carrying out genotype–phenotype mapping include:

1 Increased sample size of the mapping populations to help account for the ‘Beavis effect’, facilitate detection of weak-

effect QTLs and provide power needed for GWAS and polygenic analyses.

2 Polygenic analyses to allow identification of the interaction among loci and better reflect the polygenic nature of varia-

tion underlying phenotypic variation.

3 Advanced data analysis methods (e.g. mixed models) to facilitate use of increasingly complex phenomic, epigenetic and

environmental data in QTL investigations.

4 Comparative genomics and data sharing to facilitate more widespread use of known markers, QTLs and candidate

genes in nonmodel species characterized by few genomic resources.

5 Development of high-quality genome assemblies to facilitate comparative genomic and meta-QTL approaches.

6 Advanced phenotyping (phenomics) to help disentangle the interactions between phenotypes, genotypes and the envi-

ronment, thereby reducing background variation and increasing the power of QTL studies.

7 Epigenetic approaches to capture the interplay between environment and genes in affecting QTL expression.

8 Improved software to help researchers efficiently and accurately carry out a wide range of analyses while using best

and most up-to-date methods. Advanced software and technology can also help with efficient phenotype data collec-

tion.

© 2016 John Wiley & Sons Ltd

10 D. T . ASHTON, P . A. RITCHIE and WELLENREUTHER



Acknowledgements

We would like to thank Louis Bernatchez for the invitation for

this review, and Peter Jaksons and Linley Jessen for help with

the statistical procedures, and David Chagn�e and John

MacCullum for constructive comments on earlier versions of

this manuscript. We would also like to thank two anonymous

reviewers for helpful feedback on earlier versions of this

manuscript. Funding for this study has been provided by The

New Zealand Institute for Plant & Food Research Limited.

References

Almuly R, Poleg-Danin Y, Gorshkov S et al. (2005) Characteri-

zation of the 50 flanking region of the growth hormone gene

of the marine teleost, gilthead sea bream Sparus aurata: anal-

ysis of a polymorphic microsatellite in the proximal pro-

moter. Fisheries Science, 71, 479–490.
Arcade A, Labourdette A, Falque M et al. (2004) BioMercator:

integrating genetic maps and QTL towards discovery of can-

didate genes. Bioinformatics, 20, 2324–2326.
Ayllon F, Kjaerner-Semb E, Furmanek T et al. (2015) The vgll3

locus controls age at maturity in wild and domesticated

atlantic salmon (Salmo salar L.) males. PLOS Genetics, 11, 1–15.
Baerwald MR, Meek MH, Stephens MR et al. (2016) Migration-

related phenotypic divergence is associated with epigenetic

modifications in rainbow trout. Molecular Ecology, 25, 1785–
1800.

Benfey PN, Mitchell-Olds T (2008) From genotype to pheno-

type: systems biology meets natural variation. Science (New

York, N.Y.), 320, 495–497.
Bras Y, Dechamp N, Krieg F et al. (2011) Detection of QTL with

effects on osmoregulation capacities in the rainbow trout

(Oncorhynchus mykiss). BMC Genetics, 12, 1–14.
Clop A, Marcq F, Takeda H et al. (2006) A mutation creating a

potential illegitimate microRNA target site in the myostatin

gene affects muscularity in sheep. Nature Genetics, 38, 813–818.
Cohen-Zinder M, Seroussi E, Larkin DM et al. (2005) Identifica-

tion of a missense mutation in the bovine ABCG2 gene with

a major effect on the QTL on chromosome 6 affecting milk

yield and composition in Holstein cattle. Genome research, 15,

936–944.
Cortijo S, Wardenaar R, Colom�e-Tatch�e M et al. (2014) Map-

ping the epigenetic basis of complex traits. Science, 343, 1145.

Dekkers JCM (2012) Application of genomics tools to animal

breeding. Current Genomics, 13, 207–212.
Desta ZA, Ortiz R (2014) Genomic selection: genome-wide pre-

diction in plant improvement. Trends in Plant Science, 19,

592–601.
Eichler EE, Flint J, Gibson G et al. (2010) Missing heritability

and strategies for finding the underlying causes of complex

disease. Nature Reviews Genetics, 11, 446–450.
Ellegren H (2014) Genome sequencing and population geno-

mics in non-model organisms. Trends in Ecology & Evolution,

29, 51–63.
Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple

genotyping-by-sequencing (GBS) approach for high diversity

species. PLoS ONE, 6, e19379.

Fang Z, Polacco M, Chen S et al. (2003) cMap: the comparative

genetic map viewer. Bioinformatics, 19, 416–417.

Gagnaire P-A, Normandeau E, Pavey SA, Bernatchez L (2013)

Mapping phenotypic, expression and transmission ratio dis-

tortion QTL using RAD markers in the Lake Whitefish (Core-

gonus clupeaformis). Molecular Ecology, 22, 3036–3048.
Goddard ME, Hayes BJ (2007) Genomic selection. Journal of

Animal Breeding and Genetics, 124, 323–330.
Goddard ME, Whitelaw E (2014) The use of epigenetic phe-

nomena for the improvement of sheep and cattle. Frontiers in

Genetics, 5, 1–6.
Gregory TR (2016). Animal genome size database. Retrieved

February 2, 2016, from http://www.genomesize.com/index.

php

Grigorenko EL (2005) The inherent complexities of gene-envir-

onment interactions. The Journals of Gerontology Series B: Psy-

chological Sciences and Social Sciences, 60, 53–64.
Hemmer-Hansen J, Therkildsen NO, Pujolar JM (2014) Popula-

tion genomics of marine fishes: next-generation prospects

and challenges. The Biological Bulletin, 227, 117–132.
Henderson CR (1984) Applications of Linear Models in Animal

Breeding. University of Guelph, Guelph, Ontario.

Hilario E, Barron L, Deng CH et al. (2015) Random Tagging

Genotyping by Sequencing (rtGBS), an unbiased approach to

locate restriction enzyme sites across the target genome.

PLoS ONE, 10, 1–15.
Hong EP, Park JW (2012) Sample size and statistical power cal-

culation in genetic association studies. Genomics & Informat-

ics, 10, 117–122.
Houle D, Mezey J, Galpern P, Carter A (2003) Automated mea-

surement of Drosophila wings. BMC Evolutionary Biology, 3,

1–13.
Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the

next challenge. Nature Reviews. Genetics, 11, 855–866.
Hu Z, Xu S (2008) A simple method for calculating the statisti-

cal power for detecting a QTL located in a marker interval.

Heredity, 101, 48–52.
Ioannidis JPA, Kavvoura FK (2006) Concordance of functional

in vitro data and epidemiological associations in complex

disease genetics. Genetics in Medicine, 8, 583–593.
Jin S, Zhang X, Jia Z et al. (2012) Genetic linkage mapping and

genetic analysis of QTL related to eye cross and eye diame-

ter in common carp (Cyprinus carpio L.) using microsatellites

and SNPs. Aquaculture, 358, 176–182.
Kahraman A, Avramov A, Nashev LG et al. (2005) Phe-

nomicDB: a multi-species genotype/phenotype database for

comparative phenomics. Bioinformatics, 21, 418–420.
Kirschner J, Weber D, Neuschl C et al. (2012) Mapping of

quantitative trait loci controlling lifespan in the short-lived

fish Nothobranchius furzeri- a new vertebrate model for age

research. Aging Cell, 11, 252–261.
Korte A, Vilhjalmsson BJ, Segura V et al. (2012) A mixed-model

approach for genome-wide association studies of correlated

traits in structured populations. Nature Genetics, 44, 1066–1071.
Lanaud C, Fouet O, Cl�ement D et al. (2009) A meta–QTL analy-

sis of disease resistance traits of Theobroma cacao L. Molecular

Breeding, 24, 361–374.
Lehner B (2013) Genotype to phenotype: lessons from model

organisms for human genetics. Nature Reviews Genetics, 14,

168–178.
Li Y, Tollefsbol TO (2011) DNA methylation detection: Bisulfite

genomic sequencing analysis. Methods in Molecular Biology

(Clifton, N.J.), 791, 11–21.

© 2016 John Wiley & Sons Ltd

QTL STUDIES IN FISH 11

http://www.genomesize.com/index.php
http://www.genomesize.com/index.php


Mackay TFC (2001) The genetic architecture of quantitative

traits. Annual Review of Genetics, 35, 303–339.
Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quan-

titative traits: challenges and prospects. Nature Reviews Genet-

ics, 10, 565–577.
Manichaikul A, Dupuis J, Sen �S, Broman KW (2006) Poor per-

formance of bootstrap confidence intervals for the location of

a quantitative trait locus. Genetics, 174, 481–489.
Massault C, Bovenhuis H, Haley C, de Koning D-J (2008) QTL

mapping designs for aquaculture. Aquaculture, 285, 23–29.
McCarthy MI, Abecasis GR, Cardon LR et al. (2008) Genome-

wide association studies for complex traits: consensus, uncer-

tainty and challenges. Nature Reviews Genetics, 9, 356–369.
Meuwissen THE, Goddard ME (1996) The use of marker haplo-

types in animal breeding schemes. Genetics Selection Evolu-

tion, 28, 161–176.
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of

total genetic value using genome-wide dense marker maps.

Genetics, 157, 1819.

Navarro A, Lee-Montero I, Santana D et al. (2016) IMAFISH_ML:

a fully-automated image analysis software for assessing fish

morphometric traits on gilthead seabream (Sparus aurata L.),

meagre (Argyrosomus regius) and red porgy (Pagrus pagrus).

Computers and Electronics in Agriculture, 121, 66–73.
Ott J, Kamatani Y, Lathrop M (2011) Family-based designs for

genome-wide association studies. Nature Reviews, 12, 465–474.
R Core Team (2013) R: A Language and Environment for Statisti-

cal Computing. R Foundation for Statistical Computing,

Vienna, Austria.

Rezende FM, Ferraz JBS, Eler JP et al. (2012) Study of using

marker assisted selection on a beef cattle breeding program

by model comparison. Livestock Science, 147, 40–48.
Risch N, Zhang H (1995) Extreme discordant sib pairs for map-

ping quantitative trait loci in humans. Science, 268, 1584.

Rockman MV (2012) The QTN program and the alleles that

matter for evolution: all that’s gold does not glitter. Evolu-

tion, 66, 1–17.
Rockman MV, Kruglyak L (2008) Breeding designs for recom-

binant inbred advanced intercross lines. Genetics, 179, 1069.

Samor�e AB, Fontanesi L (2016) Genomic selection in pigs: state

of the art and perspectives. Italian Journal of Animal Science,

15, 211–232.
Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008)

Linking the genomes of nonmodel teleosts through compara-

tive genomics. Marine Biotechnology, 10, 227–233.
Sauvage C, Vagner M, Derome N, Audet C, Bernatchez L

(2012) Coding gene SNP mapping reveals QTL linked to

growth and stress response in brook charr (Salvelinus fonti-

nalis). G3-Genes Genomes. Genetics, 2, 707–720.
Savolainen O, Lascoux M, Merila J (2013) Ecological genomics

of local adaptation. Nature Reviews Genetics, 14, 807–820.
Sham PC, Purcell SM (2014) Statistical power and significance

testing in large-scale genetic studies. Nature Reviews Genetics,

15, 335–346.
Silva PF, McGurk C, Thompson KD, Jayasuriya NS, Bron JE

(2015) Development of a quantitative semi-automated system

for intestinal morphology assessment in Atlantic salmon,

using image analysis. Aquaculture, 442, 100–111.
Slate JON (2005) INVITED REVIEW: quantitative trait locus

mapping in natural populations: progress, caveats and future

directions. Molecular Ecology, 14, 363–379.

Slate J (2013) From beavis to beak color: a simulation study to

examine how much QTL mapping can reveal about the

genetic architecture of quantitative traits. Evolution, 67, 1251–
1262.

Stranger BE, Stahl EA, Raj T (2011) Progress and promise of

genome-wide association studies for human complex trait

genetics. Genetics, 187, 367–383.
Sutherland BJG, Gosselin T, Normandeau E et al. (in press) Sal-

monid chromosome evolution as revealed by a novel method

for comparing RADseq linkage maps. Genome Biology and

Evolution, doi:10.1093/gbe/evw262

Tong J, Sun X (2015) Genetic and genomic analyses for eco-

nomically important traits and their applications in molecu-

lar breeding of cultured fish. Science China Life Sciences, 58,

178–186.
Viazzi S, Van Hoestenberghe S, Goddeeris BM, Berckmans D

(2015) Automatic mass estimation of Jade perch Scortum bar-

coo by computer vision. Aquacultural Engineering, 64, 42–48.
Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five

years of GWAS discovery. The American Journal of Human

Genetics, 90, 7–24.
Visscher PM, Thompson R, Haley CS (1996) Confidence intervals

in QTL mapping by bootstrapping. Genetics, 143, 1013–1020.
Weight C, Parnham D, Waites R (2008) TECHNICAL

ADVANCE: LeafAnalyser: a computational method for rapid

and large-scale analyses of leaf shape variation. The Plant

Journal, 53, 578–586.
Wellenreuther M, Hansson B (2016) Detecting polygenic evolu-

tion: problems, pitfalls, and promises. Trends in Genetics, 32,

155–164.
Zhang C, Hsieh TF (2013) Heritable epigenetic variation and its

potential applications for crop improvement. Plant Breeding

and Biotechnology, 1, 307–319.
Zhou X, Stephens M (2012) Genome-wide efficient mixed-

model analysis for association studies. Nature Genetics, 44,

821–824.

P.A.R. and M.W. supervised the analysis and drafting

of this paper. D.T.A. collected the data from the papers

that were reviewed and analysed the results; D.T.A.

and M.W. drafted the article; all authors revised the

article.

Supporting information

Additional supporting information may be found in the online ver-

sion of this article.

Fig. S1. Number of papers in each group from the initial Web

of Science search after removal of duplicated studies.

Fig. S2. The proportion of studies using different numbers of

parents and specific crossing strategies to produce mapping

populations for QTL identification.

Table S1 General info for 146 studies included in this review.

© 2016 John Wiley & Sons Ltd

12 D. T . ASHTON, P . A. RITCHIE and WELLENREUTHER

http://dx.doi.org/10.1093/gbe/evw262

